Доступ предоставлен для: Guest
Seventh International Symposium on Turbulence and Shear Flow Phenomena
July, 28-31, 2011, Ottawa Convention Centre, Ottawa, Canada

DOI: 10.1615/TSFP7

NUMERICAL INVESTIGATION OF WALL HEAT TRANSFER IN TURBULENT REACTING WALL-JETS

pages 1-6
DOI: 10.1615/TSFP7.80
Get accessGet access

Краткое описание

In the present investigation, three-dimensional direct numerical simulation is used to study a binary irreversible exothermic global reaction in a plane turbulent wall-jet. The flow is compressible and the chemical reaction is modeled by a single-step reaction with Arrhenius-type reaction rate. A constant coflow velocity is applied above the jet, with a temperature equal to that of the wall and a temperature dependent viscosity according to Sutherland's law is used. At the inlet, fuel and oxidizer enter the domain separately in a non-premixed manner. The inlet Reynolds and Mach numbers are the same in all simulation cases. Primarily, it is observed that heat release effects delay the transition and the growth rate of the turbulent wall-jet is influenced by the reaction through temperature-induced changes and density variations. The wall heat flux is increased, however the corresponding Nusselt numbers decrease with increase of heat release.

Портал Begell Электронная Бибилиотека e-Книги Журналы Справочники и Сборники статей Коллекции Цены и условия подписки Begell House Контакты Language English 中文 Русский Português German French Spain